The Subspace Flatness Conjecture and Faster Integer Programming

Victor Reis (Microsoft Research)

Joint work with Thomas Rothvoss (University of Washington)

MIP 2025 June 4th

$$6x_1 + 5x_2 \le 23$$

 $2x_1 - 5x_2 \ge 1$
 $2x_1 + 10x_2 \ge 1$

$$6x_{1} + 5x_{2} \leq 23$$

$$2x_{1} - 5x_{2} \geq 1$$

$$2x_{1} + 10x_{2} \geq 1$$

$$x_{2}$$

$$x_{1} + x_{2} = 0$$

▶ Solution $x \in \mathbb{R}^n$ to a system of linear inequalities in n variables:

$$6x_{1} + 5x_{2} \leq 23$$

$$2x_{1} - 5x_{2} \geq 1$$

$$2x_{1} + 10x_{2} \geq 1$$

$$(\frac{1}{2}, 0)$$

$$x_{1}$$

▶ Not always possible: $1 \le x_1 \le -1$

$$6x_{1} + 5x_{2} \leq 23$$

$$2x_{1} - 5x_{2} \geq 1$$

$$2x_{1} + 10x_{2} \geq 1$$

$$(\frac{1}{2}, 0)$$

$$(\frac{1}{2}, 0)$$

$$x_{1}$$

- ▶ Not always possible: $1 \le x_1 \le -1$
- Resource allocation (energy, water, capital)

$$6x_{1} + 5x_{2} \leq 23$$

$$2x_{1} - 5x_{2} \geq 1$$

$$2x_{1} + 10x_{2} \geq 1$$

$$(\frac{1}{2}, 0)$$

$$x_{1}$$

- Not always possible: $1 \le x_1 \le -1$
- Resource allocation (energy, water, capital)
- ► First algorithm [Fourier, 1824]; simplex method [Dantzig '47]

$$6x_{1} + 5x_{2} \leq 23$$

$$2x_{1} - 5x_{2} \geq 1$$

$$2x_{1} + 10x_{2} \geq 1$$

$$(\frac{1}{2}, 0)$$

$$x_{1}$$

- Not always possible: $1 \le x_1 \le -1$
- Resource allocation (energy, water, capital)
- ▶ First algorithm [Fourier, 1824]; simplex method [Dantzig '47]
- ▶ Polynomial time: ellipsoid method O(n⁶) [Khachiyan '79]

$$6x_1 + 5x_2 \le 23$$

 $2x_1 - 5x_2 \ge 1$
 $2x_1 + 10x_2 \ge 1$

 \blacktriangleright Solution $x\in \mathbb{Z}^n$ to a system of linear inequalities in n variables:

$$6x_1 + 5x_2 \le 23$$

 $2x_1 - 5x_2 \ge 1$
 $2x_1 + 10x_2 \ge 1$

► Indivisible resource allocation (scheduling, routing, labor)

$$6x_1 + 5x_2 \le 23$$

 $2x_1 - 5x_2 \ge 1$
 $2x_1 + 10x_2 \ge 1$

- Indivisible resource allocation (scheduling, routing, labor)
- ► First algorithm [Gomory '58]; branch and bound [Land, Doig '60]

$$6x_1 + 5x_2 \le 23$$

 $2x_1 - 5x_2 \ge 1$
 $2x_1 + 10x_2 \ge 1$

- Indivisible resource allocation (scheduling, routing, labor)
- ► First algorithm [Gomory '58]; branch and bound [Land, Doig '60]
- ▶ NP-hard! [Karp '72]

$$6x_1 + 5x_2 \le 23$$
$$2x_1 - 5x_2 \ge 1$$
$$2x_1 + 10x_2 \ge 1$$

- Indivisible resource allocation (scheduling, routing, labor)
- ► First algorithm [Gomory '58]; branch and bound [Land, Doig '60]
- NP-hard! [Karp '72]
- $ightharpoonup 2^{O(n^3)}$ [Lenstra '83]

$$6x_1 + 5x_2 \le 23$$

 $2x_1 - 5x_2 \ge 1$
 $2x_1 + 10x_2 \ge 1$

- ► Indivisible resource allocation (scheduling, routing, labor)
- ► First algorithm [Gomory '58]; branch and bound [Land, Doig '60]
- ► NP-hard! [Karp '72]
- ▶ 2^{O(n³)} [Lenstra '83]
- $O(n)^{\frac{5}{2}n}$ [Kannan '83, '87], $O(n)^{2n}$ [HK '10], $\tilde{O}(n)^{\frac{4}{3}n}$ [DPV '11]

$$6x_1 + 5x_2 \le 23$$

 $2x_1 - 5x_2 \ge 1$
 $2x_1 + 10x_2 \ge 1$

- ► Indivisible resource allocation (scheduling, routing, labor)
- ► First algorithm [Gomory '58]; branch and bound [Land, Doig '60]
- ▶ NP-hard! [Karp '72]
- ▶ 2^{O(n³)} [Lenstra '83]
- $O(n)^{\frac{5}{2}n}$ [Kannan '83, '87], $O(n)^{2n}$ [HK '10], $\tilde{O}(n)^{\frac{4}{3}n}$ [DPV '11]
- ▶ O(n)ⁿ [Dadush '12, Dadush, Eisenbrand, Rothvoss '22]

$$6x_1 + 5x_2 \le 23$$

 $2x_1 - 5x_2 \ge 1$
 $2x_1 + 10x_2 \ge 1$

- ► Indivisible resource allocation (scheduling, routing, labor)
- ▶ First algorithm [Gomory '58]; branch and bound [Land, Doig '60]
- ► NP-hard! [Karp '72]
- ▶ 2^{O(n³)} [Lenstra '83]
- $O(n)^{\frac{5}{2}n}$ [Kannan '83, '87], $O(n)^{2n}$ [HK '10], $\tilde{O}(n)^{\frac{4}{3}n}$ [DPV '11]
- ▶ O(n)ⁿ [Dadush '12, Dadush, Eisenbrand, Rothvoss '22]
- $\hspace{1cm} \hspace{1cm} \hspace{1cm}$

Integer Programming

Problem

Given a convex body $K \subset \mathbb{R}^n$, find a point in $K \cap \mathbb{Z}^n$ or certify $K \cap \mathbb{Z}^n = \emptyset$.

$$6x_1 + 5x_2 \leqslant 23$$

$$2x_1 - 5x_2 \geqslant 1$$

$$2x_1 + 10x_2 \geqslant 1$$

$$K$$

Integer Programming

Problem

Given a convex body $K \subset \mathbb{R}^n$, find a point in $K \cap \mathbb{Z}^n$ or certify $K \cap \mathbb{Z}^n = \emptyset$.

$$6x_{1} + 5x_{2} \leq 23$$

$$2x_{1} - 5x_{2} \geq 1$$

$$2x_{1} + 10x_{2} \geq 1$$

K

Khintchine's flatness theorem (1947)

- an integer point in K or
- a direction $c \in \mathbb{Z}^n \setminus \{0\}$ so that $\max_{x \in K} c^\top x \min_{x \in K} c^\top x \leqslant Flat(n)$.

Khintchine's flatness theorem (1947)

- an integer point in K or
- a direction $c \in \mathbb{Z}^n \setminus \{0\}$ so that $\max_{x \in K} c^\top x \min_{x \in K} c^\top x \leqslant Flat(n)$.

Khintchine's flatness theorem (1947)

- an integer point in K or
- a direction $c \in \mathbb{Z}^n \setminus \{0\}$ so that $\max_{x \in K} c^\top x \min_{x \in K} c^\top x \leqslant Flat(n)$.

Khintchine's flatness theorem (1947)

- an integer point in K or
- a direction $c \in \mathbb{Z}^n \setminus \{0\}$ so that $\max_{x \in K} c^\top x \min_{x \in K} c^\top x \leqslant Flat(n)$.

Khintchine's flatness theorem (1947)

Given a convex $K \subset \mathbb{R}^n$, there exists either

- an integer point in K or
- a direction $c \in \mathbb{Z}^n \setminus \{\mathbf{0}\}$ so that $\max_{x \in K} c^\top x \min_{x \in K} c^\top x \leqslant Flat(n)$.

▶ In polynomial time: Flat(n) $\leq 2^{O(n^2)}$ [LLL '82, Lenstra '83]

Khintchine's flatness theorem (1947)

- an integer point in K or
- a direction $c \in \mathbb{Z}^n \setminus \{0\}$ so that $\max_{x \in K} c^\top x \min_{x \in K} c^\top x \leqslant Flat(n)$.

- ▶ In polynomial time: Flat(n) $\leq 2^{O(n^2)}$ [LLL '82, Lenstra '83]
- ► Lenstra's algorithm: $T(n) \le T(n-1) \cdot 2^{O(n^2)} \implies T(n) \le 2^{O(n^3)}$.

Khintchine's flatness theorem (1947)

Given a convex $K \subset \mathbb{R}^n$, there exists either

- an integer point in K or
- a direction $c \in \mathbb{Z}^n \setminus \{0\}$ so that $\max_{x \in K} c^\top x \min_{x \in K} c^\top x \leqslant Flat(n)$.

Theorem [Dadush, Peikert, Vempala 2011]

We can find a direction minimizing $\max_{x \in K} c^{\top} x - \min_{x \in K} c^{\top} x$ in time $2^{O(n)}$, and solve IP in time $O(\text{Flat}(n))^n$.

Khintchine's flatness theorem (1947)

Given a convex $K \subset \mathbb{R}^n$, there exists either

- an integer point in K or
- a direction $c \in \mathbb{Z}^n \setminus \{0\}$ so that $\max_{x \in K} c^\top x \min_{x \in K} c^\top x \leqslant Flat(n)$.

Theorem [Dadush, Peikert, Vempala 2011]

We can find a direction minimizing $\max_{x \in K} c^{\top} x - \min_{x \in K} c^{\top} x$ in time $2^{O(n)}$, and solve IP in time $O(\operatorname{Flat}(n))^n$.

▶ Best bound for Flat(n) at the time: $O(n^{\frac{4}{3}} \cdot (\log n)^{O(1)})$ [BLPS '99]

Khintchine's flatness theorem (1947)

Given a convex $K \subset \mathbb{R}^n$, there exists either

- an integer point in K or
- a direction $c \in \mathbb{Z}^n \setminus \{0\}$ so that $\max_{x \in K} c^\top x \min_{x \in K} c^\top x \leqslant Flat(n)$.

Theorem [Dadush, Peikert, Vempala 2011]

We can find a direction minimizing $\max_{x \in K} c^{\top} x - \min_{x \in K} c^{\top} x$ in time $2^{O(n)}$, and solve IP in time $O(\operatorname{Flat}(n))^n$.

- ▶ Best bound for Flat(n) at the time: $O(n^{\frac{4}{3}} \cdot (\log n)^{O(1)})$ [BLPS '99]
- ▶ Barrier: Flat(\mathfrak{n}) $\geqslant \mathfrak{n}$

Khintchine's flatness theorem (1947)

Given a convex $K \subset \mathbb{R}^n$, there exists either

- an integer point in K or
- a direction $c \in \mathbb{Z}^n \setminus \{0\}$ so that $\max_{x \in K} c^\top x \min_{x \in K} c^\top x \leqslant Flat(n)$.

Theorem [Dadush, Peikert, Vempala 2011]

We can find a direction minimizing $\max_{x \in K} c^{\top} x - \min_{x \in K} c^{\top} x$ in time $2^{O(n)}$, and solve IP in time $O(\operatorname{Flat}(n))^n$.

- ▶ Best bound for Flat(n) at the time: $O(n^{\frac{4}{3}} \cdot (\log n)^{O(1)})$ [BLPS '99]
- ▶ Barrier: Flat(\mathfrak{n}) $\geqslant \mathfrak{n}$
- ► $| \operatorname{Flat}(n) \leq \operatorname{O}(n \cdot (\log n)^3) [R., \operatorname{Rothvoss} '23] |$

Daniel's vision

Can we move past hyperplane flatness with *subspaces?*

Daniel's vision

Can we move past hyperplane flatness with *subspaces?*

▶ While $Flat(n) \ge n$, for subspace flatness $\ge \log n$ [Kannan-Lovász '88]

▶ A lattice $\mathcal{L} := B\mathbb{Z}^n$ (integer linear combinations of a basis)

▶ Number theory [Lagrange 1770], sphere packing [Viazovska '16], post-quantum cryptography [Regev '05], factoring [Regev '23]

- ▶ Number theory [Lagrange 1770], sphere packing [Viazovska '16], post-quantum cryptography [Regev '05], factoring [Regev '23]
- ▶ $det(\mathcal{L}) := vol(B[0,1]^n)$ 'sparsity' of \mathcal{L}

- ▶ Number theory [Lagrange 1770], sphere packing [Viazovska '16], post-quantum cryptography [Regev '05], factoring [Regev '23]
- ▶ $det(\mathcal{L}) := vol(B[0,1]^n)$ 'sparsity' of \mathcal{L}

- ▶ Number theory [Lagrange 1770], sphere packing [Viazovska '16], post-quantum cryptography [Regev '05], factoring [Regev '23]
- ▶ $det(\mathcal{L}) := vol(B[0,1]^n)$ 'sparsity' of \mathcal{L}

- Number theory [Lagrange 1770], sphere packing [Viazovska '16], post-quantum cryptography [Regev '05], factoring [Regev '23]
- ▶ $det(\mathcal{L}) := vol(B[0,1]^n)$ 'sparsity' of \mathcal{L}

- ▶ Number theory [Lagrange 1770], sphere packing [Viazovska '16], post-quantum cryptography [Regev '05], factoring [Regev '23]
- ▶ $det(\mathcal{L}) := vol(B[0,1]^n)$ 'sparsity' of \mathcal{L}
- ▶ $B[0,1]^n$ tiles \mathbb{R}^n for any basis B

$$\mu(\mathcal{L},K) := min\{r>0: \mathcal{L} + r \cdot K = \mathbb{R}^n\}$$

$$\mu(\mathcal{L},K) := min\{r>0: \mathcal{L} + r \cdot K = \mathbb{R}^n\}$$

$$\mu(\mathcal{L},K) := min\{r>0: \mathcal{L} + r \cdot K = \mathbb{R}^n\}$$

$$\mu(\mathcal{L},K) := min\{r > 0 : \mathcal{L} + r \cdot K = \mathbb{R}^n\}$$

▶ For convex $K \subset \mathbb{R}^n$ and lattice $\mathcal{L} := B\mathbb{Z}^n$, the **covering radius** is

$$\mu(\mathcal{L},K) := min\{r > 0 : \mathcal{L} + r \cdot K = \mathbb{R}^n\}$$

▶ For convex $K \subset \mathbb{R}^n$ and lattice $\mathcal{L} := B\mathbb{Z}^n$, the **covering radius** is

$$\begin{split} \mu(\mathcal{L},K) &:= min\{r>0: \mathcal{L} + r \cdot K = \mathbb{R}^n\} \\ &= min\{r>0: every \ translate \ of \ r \cdot K \ intersects \ \mathcal{L}\} \end{split}$$

▶ For convex $K \subset \mathbb{R}^n$ and lattice $\mathcal{L} := B\mathbb{Z}^n$, the **covering radius** is

$$\begin{split} \mu(\mathcal{L},K) &:= min\{r>0: \mathcal{L} + r \cdot K = \mathbb{R}^n\} \\ &= min\{r>0: every \ translate \ of \ r \cdot K \ intersects \ \mathcal{L}\} \end{split}$$

▶ For convex $K \subset \mathbb{R}^n$ and lattice $\mathcal{L} := B\mathbb{Z}^n$, the **covering radius** is

$$\begin{split} \mu(\mathcal{L},K) &:= min\{r>0: \mathcal{L} + r \cdot K = \mathbb{R}^n\} \\ &= min\{r>0: every \ translate \ of \ r \cdot K \ intersects \ \mathcal{L}\} \end{split}$$

▶ For convex $K \subset \mathbb{R}^n$ and lattice $\mathcal{L} := B\mathbb{Z}^n$, the **covering radius** is

$$\begin{split} \mu(\mathcal{L},K) &:= min\{r>0: \mathcal{L} + r \cdot K = \mathbb{R}^n\} \\ &= min\{r>0: every \ translate \ of \ r \cdot K \ intersects \ \mathcal{L}\} \end{split}$$

Integer Programming for $\mu(\mathbb{Z}^n,K)\leqslant \frac{1}{2}$

Integer Programming for $\mu(\mathbb{Z}^n, K) \leqslant \frac{1}{2}$

Theorem [Dadush '12]

There exists a $2^{O(\mathfrak{n})}$ time algorithm which either:

- finds a point in $K \cap \mathbb{Z}^n$ or
- decides $\frac{1}{2}(K + b(K)) \cap \mathbb{Z}^n = \emptyset$.

Integer Programming for $\mu(\mathbb{Z}^n, K) \leqslant \frac{1}{2}$

Theorem [Dadush '12]

There exists a $2^{O(\mathfrak{n})}$ time algorithm which either:

- finds a point in $K \cap \mathbb{Z}^n$ or
- decides $\frac{1}{2}(K + b(K)) \cap \mathbb{Z}^n = \emptyset$. \Leftarrow never happens when $\mu(\mathbb{Z}^n, K) \leqslant \frac{1}{2}!$

▶ For convex $K \subset \mathbb{R}^n$ and lattice \mathcal{L} , the **covering radius** is

$$\mu(\mathcal{L},K) \ := \ min\{r>0: \mathcal{L}+r\cdot K=\mathbb{R}^n\}$$

► How can we estimate the covering radius?

▶ For convex $K \subset \mathbb{R}^n$ and lattice \mathcal{L} , the **covering radius** is

$$\mu(\mathcal{L},K) \ := \ min\{r>0: \mathcal{L}+r\cdot K=\mathbb{R}^n\}$$

► How can we estimate the covering radius?

Lemma

If $\mathcal{L} + K = \mathbb{R}^n$ then $vol(K) \geqslant det(\mathcal{L})$.

▶ For convex $K \subset \mathbb{R}^n$ and lattice \mathcal{L} , the **covering radius** is

$$\mu(\mathcal{L},K) \ := \ min\{r>0: \mathcal{L}+r\cdot K=\mathbb{R}^n\}$$

► How can we estimate the covering radius?

Lemma

If
$$\mathcal{L} + K = \mathbb{R}^n$$
 then $vol(K) \geqslant det(\mathcal{L})$.

Intuition: any covering needs as much volume as a tiling

▶ For convex $K \subset \mathbb{R}^n$ and lattice \mathcal{L} , the **covering radius** is

$$\mu(\mathcal{L},K) \ := \ min\{r>0: \mathcal{L}+r\cdot K=\mathbb{R}^n\}$$

► How can we estimate the covering radius?

Lemma

If
$$\mathcal{L} + K = \mathbb{R}^n$$
 then $vol(K) \geqslant det(\mathcal{L})$.

- Intuition: any covering needs as much volume as a tiling
- ▶ As a corollary, we have for any K, \mathcal{L} :

$$\operatorname{vol}(\mu(\mathcal{L},K)\cdot K)\geqslant \operatorname{det}(\mathcal{L}) \implies \mu(\mathcal{L},K)^n\geqslant \frac{\operatorname{det}(\mathcal{L})}{\operatorname{vol}(K)}$$

▶ For convex $K \subset \mathbb{R}^n$ and lattice \mathcal{L} , the **covering radius** is

$$\mu(\mathcal{L},K) \ := \ min\{r>0: \mathcal{L}+r\cdot K=\mathbb{R}^n\}$$

► How can we estimate the covering radius?

Lemma

If
$$\mathcal{L} + K = \mathbb{R}^n$$
 then $vol(K) \geqslant det(\mathcal{L})$.

- ▶ Intuition: any covering needs as much volume as a tiling
- ▶ As a corollary, we have for any K, \mathcal{L} :

$$\operatorname{vol}(\mu(\mathcal{L},K)\cdot K)\geqslant \operatorname{det}(\mathcal{L}) \implies \mu(\mathcal{L},K)\geqslant \left(\frac{\operatorname{det}(\mathcal{L})}{\operatorname{vol}(K)}\right)^{1/n}$$

▶ For convex $K \subset \mathbb{R}^n$ and lattice \mathcal{L} , the **covering radius** is

$$\mu(\mathcal{L},K) \ := \ min\{r>0: \mathcal{L}+r\cdot K=\mathbb{R}^n\}$$

► How can we estimate the covering radius?

Lemma

If
$$\mathcal{L} + K = \mathbb{R}^n$$
 then $vol(K) \geqslant det(\mathcal{L})$.

- Intuition: any covering needs as much volume as a tiling
- ▶ As a corollary, we have for any K, \mathcal{L} :

$$\operatorname{vol}(\mu(\mathcal{L},K)\cdot K)\geqslant \operatorname{det}(\mathcal{L}) \implies \mu(\mathcal{L},K)\geqslant \left(\frac{\operatorname{det}(\mathcal{L})}{\operatorname{vol}(K)}\right)^{1/n}=\operatorname{nd}(\mathcal{L},K).$$

 $\qquad \text{Simple lower bound: } \mu(\mathcal{L},K) \geqslant nd(\mathcal{L},K) = \left(\frac{\det(\mathcal{L})}{vol(K)}\right)^{1/n}$

 $\qquad \text{Simple lower bound: } \mu(\mathcal{L},K) \geqslant nd(\mathcal{L},K) = \left(\frac{\det(\mathcal{L})}{vol(K)}\right)^{1/n} = 1 \ \ \odot$

 $\qquad \text{Simple lower bound: } \mu(\mathcal{L},K) \geqslant nd(\mathcal{L},K) = \left(\frac{det(\mathcal{L})}{vol(K)}\right)^{1/n} = 1 \ \ \ \, \odot$

- ► For any subspace *W*:

$$\mu(\mathcal{L}, K) \geqslant \mu(\Pi_{W}(\mathcal{L}), \Pi_{W}(K)) \geqslant \operatorname{nd}(\Pi_{W}(\mathcal{L}), \Pi_{W}(K))$$

- ► For any subspace *W*:

$$\mu(\mathcal{L}, K) \geqslant \mu(\Pi_{W}(\mathcal{L}), \Pi_{W}(K)) \geqslant nd(\Pi_{W}(\mathcal{L}), \Pi_{W}(K))$$

- ► For any subspace *W*:

$$\mu(\mathcal{L}, K) \geqslant \mu(\Pi_{W}(\mathcal{L}), \Pi_{W}(K)) \geqslant \operatorname{nd}(\Pi_{W}(\mathcal{L}), \Pi_{W}(K)) = \frac{5}{3} \ \odot$$

Denote

$$\alpha(\mathcal{L},K) := \max_{\text{subspace } W \subseteq \mathbb{R}^n} nd(\Pi_W(\mathcal{L}),\Pi_W(K)).$$

Denote

$$\alpha(\mathcal{L},\mathsf{K}) := \max_{\substack{\mathsf{subspace}\, W \subset \mathbb{R}^n}} \mathsf{nd}(\Pi_W(\mathcal{L}),\Pi_W(\mathsf{K})).$$

Theorem [Kannan and Lovász '88]

For any convex $K\subset\mathbb{R}^n$ and lattice $\mathcal{L}\subset\mathbb{R}^n$,

$$\alpha(\mathcal{L},K)\leqslant \mu(\mathcal{L},K)\leqslant \mathbf{1}\cdot \alpha(\mathcal{L},K).$$

Denote

$$\alpha(\mathcal{L},\mathsf{K}) := \max_{\text{subspace } W \subseteq \mathbb{R}^n} nd(\Pi_W(\mathcal{L}),\Pi_W(\mathsf{K})).$$

Theorem [Kannan and Lovász '88]

For any convex $K \subset \mathbb{R}^n$ and lattice $\mathcal{L} \subset \mathbb{R}^n$,

$$\alpha(\mathcal{L},K)\leqslant \mu(\mathcal{L},K)\leqslant {\color{blue} {\color{blue} {\color{blue} {\color{blue} {\color{blue} M}}}}\cdot \alpha(\mathcal{L},K).$$

Theorem [R., Rothvoss '23]

For any convex $K\subset \mathbb{R}^n$ and lattice $\mathcal{L}\subset \mathbb{R}^n$,

$$\mu(\mathcal{L},\mathsf{K}) \lesssim \bigl(log\, n\bigr)^3 \cdot \alpha(\mathcal{L},\mathsf{K}).$$

Denote

$$\alpha(\mathcal{L},\mathsf{K}) := \max_{\text{subspace } W \subseteq \mathbb{R}^n} \mathsf{nd}(\Pi_W(\mathcal{L}),\Pi_W(\mathsf{K})).$$

Theorem [Kannan and Lovász '88]

For any convex $K\subset\mathbb{R}^n$ and lattice $\mathcal{L}\subset\mathbb{R}^n$,

$$\alpha(\mathcal{L}, K) \leq \mu(\mathcal{L}, K) \leq \mathbf{n} \cdot \alpha(\mathcal{L}, K).$$

Theorem [R., Rothvoss '23]

For any convex $K \subset \mathbb{R}^n$ and lattice $\mathcal{L} \subset \mathbb{R}^n$,

$$\mu(\mathcal{L}, \mathsf{K}) \lesssim \left(log \, n\right)^3 \cdot \alpha(\mathcal{L}, \mathsf{K}).$$

Previously known only when K is a ball [DR '16, RSD '17]

Denote

$$\alpha(\mathcal{L},\mathsf{K}) := \max_{\text{subspace } \mathcal{W} \subset \mathbb{R}^n} nd(\Pi_{\mathcal{W}}(\mathcal{L}),\Pi_{\mathcal{W}}(\mathsf{K})).$$

Theorem [Kannan and Lovász '88]

For any convex $K \subset \mathbb{R}^n$ and lattice $\mathcal{L} \subset \mathbb{R}^n$,

$$\alpha(\mathcal{L},K)\leqslant \mu(\mathcal{L},K)\leqslant \textbf{1}\cdot \alpha(\mathcal{L},K).$$

Theorem [R., Rothvoss '23]

For any convex $K \subset \mathbb{R}^n$ and lattice $\mathcal{L} \subset \mathbb{R}^n$,

$$\mu(\mathcal{L},\mathsf{K}) \lesssim \big(log\, n\big)^3 \cdot \alpha(\mathcal{L},\mathsf{K}).$$

Previously known only when K is a ball [DR '16, RSD '17]

Corollary [R., Rothvoss '23, following Dadush '12, '19]

We can find a point in $K \cap \mathbb{Z}^n$ or certify $K \cap \mathbb{Z}^n = \emptyset$ in time $O(\log n)^{4n}$.

Theorem [John '48]

For any convex $K\subset\mathbb{R}^n$ there exists an affine linear map T so that

$$B \subseteq T(K) \subseteq \mathbf{n} \cdot B$$

Theorem [John '48]

For any convex $K\subset \mathbb{R}^n$ there exists an affine linear map T so that

Theorem [John '48]

For any convex $K\subset \mathbb{R}^n$ there exists an affine linear map T so that

Theorem [John '48]

For any convex $K\subset\mathbb{R}^n$ there exists an affine linear map T so that

$$B \subseteq T(K) \subseteq \mathbf{n} \cdot B$$

Theorem [Figiel, Tomczak-Jaegermann, Pisier '79]

For any symmetric convex $K \subset \mathbb{R}^n$ there exists a linear map T so that

$$\Pr_{c \sim S}[c \in \mathsf{T}(\mathsf{K})] > 0.9 \quad \text{and} \quad \Pr_{c \sim S}[c^{\top}x \leqslant O\big(log \ n\big) \ \forall \ x \in \mathsf{T}(\mathsf{K})] > 0.9$$

Theorem [John '48]

For any convex $K\subset\mathbb{R}^n$ there exists an affine linear map T so that

$$B \subseteq T(K) \subseteq \mathbf{n} \cdot B$$

Theorem [Figiel, Tomczak-Jaegermann, Pisier '79]

For any $\mathit{symmetric}$ convex $K \subset \mathbb{R}^n$ there exists a linear map T so that

$$\Pr_{c \sim S}[c \in \mathsf{T}(\mathsf{K})] > 0.9 \quad \text{and} \quad \Pr_{c \sim S}[c^{\top}x \leqslant O\big(log\:n\big) \: \forall \: x \in \mathsf{T}(\mathsf{K})] > 0.9$$

Theorem [John '48]

For any convex $K\subset\mathbb{R}^n$ there exists an affine linear map T so that

$$B \subseteq T(K) \subseteq \mathbf{n} \cdot B$$

Theorem [Figiel, Tomczak-Jaegermann, Pisier '79]

For any $\mathit{symmetric}$ convex $K \subset \mathbb{R}^n$ there exists a linear map T so that

$$\Pr_{c \sim S}[c \in \mathsf{T}(\mathsf{K})] > 0.9 \quad \text{and} \quad \Pr_{c \sim S}[c^{\top}x \leqslant O\big(log\:n\big) \: \forall \: x \in \mathsf{T}(\mathsf{K})] > 0.9$$

Theorem [R., Rothvoss '23]

For any convex $K \subset \mathbb{R}^n$ and lattice $\mathcal{L} \subset \mathbb{R}^n$,

$$\mu(\mathcal{L}, \mathsf{K}) \lesssim \left(log \, n\right)^3 \cdot \alpha(\mathcal{L}, \mathsf{K}).$$

Theorem [R., Rothvoss '23]

For any convex $K \subset \mathbb{R}^n$ and lattice $\mathcal{L} \subset \mathbb{R}^n$,

$$\mu(\mathcal{L},\mathsf{K}) \lesssim \big(log\, n\big)^3 \cdot \alpha(\mathcal{L},\mathsf{K}).$$

▶ First log n: Put K in ℓ -position by setting K \leftarrow T(K), \mathcal{L} \leftarrow T(\mathcal{L})

Theorem [R., Rothvoss '23]

For any convex $K \subset \mathbb{R}^n$ and lattice $\mathcal{L} \subset \mathbb{R}^n$,

$$\mu(\mathcal{L},\mathsf{K}) \lesssim \left(log\,n\right)^3 \cdot \alpha(\mathcal{L},\mathsf{K}).$$

- ▶ First log n: Put K in ℓ -position by setting K \leftarrow T(K), \mathcal{L} \leftarrow T(\mathcal{L})
- ► Second log n: 'triangle inequality' for subspace W with dim $W \ge \frac{n}{2}$:

$$\mu(\mathcal{L},\mathsf{K})\leqslant \mu(\mathcal{L}\cap W,\mathsf{K}\cap W)+\mu(\Pi_{W^{\perp}}(\mathcal{L}),\Pi_{W^{\perp}}(\mathsf{K}))$$

and recurse log n many times on the projections.

Theorem [R., Rothvoss '23]

For any convex $K \subset \mathbb{R}^n$ and lattice $\mathcal{L} \subset \mathbb{R}^n$,

$$\mu(\mathcal{L},\mathsf{K}) \lesssim \left(log\,n\right)^3 \cdot \alpha(\mathcal{L},\mathsf{K}).$$

- ▶ First log n: Put K in ℓ -position by setting K \leftarrow T(K), \mathcal{L} \leftarrow T(\mathcal{L})
- ► Second log n: 'triangle inequality' for subspace W with dim $W \ge \frac{n}{2}$:

$$\mu(\mathcal{L},\mathsf{K})\leqslant \mu(\mathcal{L}\cap W,\mathsf{K}\cap W)+\mu(\Pi_{W^{\perp}}(\mathcal{L}),\Pi_{W^{\perp}}(\mathsf{K}))$$

and recurse log n many times on the projections.

▶ Third log n: reverse Minkowski theorem [RSD '16]

- (1) If $\mu(\mathcal{L}, K) \leqslant \frac{1}{2}$, 2-approx. IP finds a point in $K \cap \mathcal{L}$. Else $\mu(\mathcal{L}, K) > \frac{1}{2}$
- (2) Find subspace W (approximately) attaining $\alpha(\mathcal{L}, K)$
- (3) Enumerate $X := \Pi_W(K) \cap \Pi_W(\mathcal{L})$
- (4) Recurse on $K \cap \Pi_W^{-1}(x)$ for each $x \in X$

- (1) If $\mu(\mathcal{L}, K) \leqslant \frac{1}{2}$, 2-approx. IP finds a point in $K \cap \mathcal{L}$. Else $\mu(\mathcal{L}, K) > \frac{1}{2}$
- (2) Find subspace W (approximately) attaining $\alpha(\mathcal{L}, K)$
- (3) Enumerate $X := \Pi_W(K) \cap \Pi_W(\mathcal{L})$
- (4) Recurse on $K \cap \Pi_W^{-1}(x)$ for each $x \in X$

- (1) If $\mu(\mathcal{L}, K) \leqslant \frac{1}{2}$, 2-approx. IP finds a point in $K \cap \mathcal{L}$. Else $\mu(\mathcal{L}, K) > \frac{1}{2}$
- (2) Find subspace W (approximately) attaining $\alpha(\mathcal{L}, K)$
- (3) Enumerate $X := \Pi_W(K) \cap \Pi_W(\mathcal{L})$
- (4) Recurse on $K \cap \Pi_W^{-1}(x)$ for each $x \in X$

- (1) If $\mu(\mathcal{L}, K) \leqslant \frac{1}{2}$, 2-approx. IP finds a point in $K \cap \mathcal{L}$. Else $\mu(\mathcal{L}, K) > \frac{1}{2}$
- (2) Find subspace W (approximately) attaining $\alpha(\mathcal{L}, K)$
- (3) Enumerate $X := \Pi_W(K) \cap \Pi_W(\mathcal{L})$
- (4) Recurse on $K \cap \Pi_W^{-1}(x)$ for each $x \in X$

- (1) If $\mu(\mathcal{L}, K) \leqslant \frac{1}{2}$, 2-approx. IP finds a point in $K \cap \mathcal{L}$. Else $\mu(\mathcal{L}, K) > \frac{1}{2}$
- (2) Find subspace W (approximately) attaining $\alpha(\mathcal{L}, K)$
- (3) Enumerate $X := \Pi_W(K) \cap \Pi_W(\mathcal{L})$
- (4) Recurse on $K \cap \Pi_W^{-1}(x)$ for each $x \in X$

- (1) If $\mu(\mathcal{L}, K) \leqslant \frac{1}{2}$, 2-approx. IP finds a point in $K \cap \mathcal{L}$. Else $\mu(\mathcal{L}, K) > \frac{1}{2}$
- (2) Find subspace W (approximately) attaining $\alpha(\mathcal{L}, K)$
- (3) Enumerate $X := \Pi_W(K) \cap \Pi_W(\mathcal{L})$
- (4) Recurse on $K \cap \Pi_W^{-1}(x)$ for each $x \in X$

Theorem (Dadush 2012)

For any full rank lattice $\mathcal{L} \subseteq \mathbb{R}^n$ and convex body $K \subseteq \mathbb{R}^n$ we have

$$|K\cap \mathcal{L}|\leqslant N:=2^n \ max\{\mu(\mathcal{L},K)^n,1\}\cdot \frac{vol(K)}{det(\mathcal{L})}$$

Moreover, we can enumerate the points in same time.

Theorem (Dadush 2012)

For any full rank lattice $\mathcal{L}\subseteq\mathbb{R}^n$ and convex body $K\subseteq\mathbb{R}^n$ we have

$$|K\cap\mathcal{L}|\leqslant N:=2^n\max\{\mu(\mathcal{L},K)^n,1\}\cdot\frac{\operatorname{vol}(K)}{\det(\mathcal{L})}$$

Moreover, we can enumerate the points in same time.

Proof of moreover part:

Theorem (Dadush 2012)

For any full rank lattice $\mathcal{L} \subseteq \mathbb{R}^n$ and convex body $K \subseteq \mathbb{R}^n$ we have

$$|K \cap \mathcal{L}| \leqslant N := 2^n \max\{\mu(\mathcal{L}, K)^n, 1\} \cdot \frac{\text{vol}(K)}{\det(\mathcal{L})}$$

Moreover, we can enumerate the points in same time.

Proof of moreover part:

Theorem (Dadush 2012)

For any full rank lattice $\mathcal{L} \subseteq \mathbb{R}^n$ and convex body $K \subseteq \mathbb{R}^n$ we have

$$|K \cap \mathcal{L}| \leqslant N := 2^n \max\{\mu(\mathcal{L}, K)^n, 1\} \cdot \frac{\text{vol}(K)}{\det(\mathcal{L})}$$

Moreover, we can enumerate the points in same time.

Proof of moreover part:

Theorem (Dadush 2012)

For any full rank lattice $\mathcal{L} \subseteq \mathbb{R}^n$ and convex body $K \subseteq \mathbb{R}^n$ we have

$$|K \cap \mathcal{L}| \leqslant N := 2^n \max\{\mu(\mathcal{L}, K)^n, 1\} \cdot \frac{\operatorname{vol}(K)}{\det(\mathcal{L})}.$$

Moreover, we can enumerate the points in same time.

Proof of moreover part:

Theorem (Dadush 2012)

For any full rank lattice $\mathcal{L} \subseteq \mathbb{R}^n$ and convex body $K \subseteq \mathbb{R}^n$ we have

$$|K \cap \mathcal{L}| \leq N := 2^n \max\{\mu(\mathcal{L}, K)^n, 1\} \cdot \frac{\text{vol}(K)}{\det(\mathcal{L})}$$

Moreover, we can enumerate the points in same time.

Proof of moreover part:

- Bound holds for any translate of K
- ▶ Any M-ellipsoid \mathcal{E} also has $|\mathcal{E} \cap \mathcal{L}| \leq 2^{O(n)}N$

Theorem (Dadush 2012)

For any full rank lattice $\mathcal{L} \subseteq \mathbb{R}^n$ and convex body $K \subseteq \mathbb{R}^n$ we have

$$|K\cap \mathcal{L}|\leqslant N:=2^n \, max\{\mu(\mathcal{L},K)^n,1\} \cdot \frac{vol(K)}{det(\mathcal{L})}.$$

Moreover, we can enumerate the points in same time.

Proof of moreover part:

- Bound holds for any translate of K
- ▶ Any M-ellipsoid \mathcal{E} also has $|\mathcal{E} \cap \mathcal{L}| \leq 2^{O(n)}N$
- ▶ Hence can enumerate all points in K in time $2^{O(n)}N$.

Analysis:

► Can find W in time $2^{O(n)}$ [Dadush '12]

Analysis:

- ► Can find W in time $2^{O(n)}$ [Dadush '12]
- ▶ Recursion for runtime (d := dimW):

$$\mathsf{T}(\mathfrak{n}) \leqslant 2^{\mathsf{O}(\mathfrak{n})} + |\mathsf{\Pi}_{W}(\mathsf{K}) \cap \mathsf{\Pi}_{W}(\mathcal{L})| \cdot \mathsf{T}(\mathfrak{n} - \mathsf{d})$$

Analysis:

- ► Can find W in time $2^{O(n)}$ [Dadush '12]
- ▶ Recursion for runtime (d := dimW):

$$\mathsf{T}(\mathfrak{n}) \leqslant 2^{\mathsf{O}(\mathfrak{n})} + n^{d} \cdot \mathsf{T}(\mathfrak{n} - \mathfrak{d}) \implies \mathsf{T}(\mathfrak{n}) \leqslant \mathsf{O}(\mathfrak{n})^{\mathfrak{n}}$$

Analysis:

- ► Can find $(\log n)$ -approximate W in time $2^{O(n)}$ [Dadush '12, '19]
- ightharpoonup Recursion for runtime (d := dimW):

$$\mathsf{T}(\mathfrak{n}) \leqslant 2^{\mathsf{O}(\mathfrak{n})} + \left(\log \mathfrak{n}\right)^{4d} \cdot \mathsf{T}(\mathfrak{n}-\mathsf{d}) \implies \boxed{\mathsf{T}(\mathfrak{n}) \leqslant \mathsf{O}(\log \mathfrak{n})^{4\mathfrak{n}}}$$

Future directions

 \blacktriangleright What can we do with polynomial space? Best runtime still $\mathfrak{n}^{O(\mathfrak{n})}$

Future directions

- ▶ What can we do with polynomial space? Best runtime still $n^{O(n)}$
- ▶ Integer programming in $2^{O(n)}$ time? Even if K is a simplex?

Future directions

- ▶ What can we do with polynomial space? Best runtime still $n^{O(n)}$
- ▶ Integer programming in $2^{O(n)}$ time? Even if K is a simplex?

Thanks for your attention!