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6x1 + 5%y < 23
2X1 — 5X2 > 1
2x1 +10x, > 1
(3,0)

> Not always possible: 1 < x; < —1

> Resource allocation (energy, water, capital)

» First algorithm [Fourier, 1824]; simplex method [Dantzig "47]
» Polynomial time: ellipsoid method O(n®) [Khachiyan '79]
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n
> Solution x € Z to a system of linear inequalities in n variables:

6Xx1 + 5%y < 23
2X1 — 5X2 2 1
2x1 +10x, > 1

» Indivisible resource allocation (scheduling, routing, labor)

» First algorithm [Gomory '58]; branch and bound [Land, Doig '60]
» NP-hard! [Karp '72]

» 20("") [Lenstra '83]

> O(n)%n [Kannan '83, ’87], O(n)?™ [HK "10], O(n)%“ [DPV "11]

» O(n)™ [Dadush "12, Dadush, Eisenbrand, Rothvoss "22]

> (10g Tl) [R., Rothvoss 23]
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What does a convex set containing no integer points look like?

It has to be flat!
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» In polynomial time: Flat(n) < 20 [LLL ’82, Lenstra '83]

» Lenstra’s algorithm: T(n) < T(n—1) - 2°") — T(n) < 20"
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Lenstra-type algorithm

Khintchine’s flatness theorem (1947)
Given a convex K C R™, there exists either
e an integer point in K or

e adirection ¢ € Z™ \ {0} so that maxc'x — minc ' x < Flat(n).
xeK xeK

Theorem [Dadush, Peikert, Vempala 2011 ]

T T

We can find a direction minimizing max c x in time 20(™),
xeK

and solve IP in time O(Flat(n))™.

X —minc
xeK

4
3 - (logn)©™) [BLPS "99]

» Best bound for Flat(n) at the time: O(n
» Barrier: Flat(n) > n

» | Flat(n) < O(n - (logn)?) [R., Rothvoss 23]
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» While Flat(n) > n, for subspace flatness > log n [Kannan-Lovész '88]
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Lattices

» A lattice £ := BZ" (integer linear combinations of a basis)

» Number theory [Lagrange 1770], sphere packing [Viazovska "16],
post-quantum cryptography [Regev '05], factoring [Regev "23]

> det(£) := vol(B[0, 1]™) "sparsity’ of £

> B0, 1]™ tiles R™ for any basis B
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Integer Programming for p(Z", K) <

1
2

Theorem [Dadush "12]
There exists a 2°(") time algorithm which either:
e finds a pointin KNZ™" or
e decides %(K +b(K)) NZ™ = (. < never happens when p(Z",K) < %!
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» For convex K C R™ and lattice £, the covering radius is
wL,K) = min{r>0:L+7r-K=R"}
» How can we estimate the covering radius?

Lemma
If £ 4+ K =R™ then vol(K) > det(£).

> Intuition: any covering needs as much volume as a tiling
> As a corollary, we have for any K, £:

det(L)
vol(K)

vol(p(£, K) - K) > det(£) = u(£,K) >(

)1/“ — nd(£,K).
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Main results

Denote
o(L,K) = Subspg}ea&(/gw nd(TTw (£), TTw(K)).
Theorem [Kannan and Lovész '88]

For any convex K C R™ and lattice £ C R™,

«(£,K) < nocLK

Theorem [R., Rothvoss 23]
For any convex K C R™ and lattice £ C R™,

K < (logn)? - az,x).

» Previously known only when K is a ball [DR "16, RSD "17]

Corollary [R., Rothvoss "23, following Dadush 12, '19]
We can find a point in K N Z™ or certify KN Z™ = () in time O(logn)*"
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Theorem [R., Rothvoss 23]
For any convex K C R™ and lattice £ C R™,

ue,x) < (logm)? . «(e, x).

» First logn: Put K in {-position by setting K < T(K), £ + T(£)
» Second log n: ‘triangle inequality” for subspace W with dim W > 3

H(L, K) < p(£nW,KNW) + pu(TTw (£), Ty (K))

and recurse log n many times on the projections.
» Third logn: reverse Minkowski theorem [RSD 16 ]
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(2) Find subspace W (approximately) attaining «(£, K)

(3) Enumerate X := Ty (K) N Ty (£)
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Upper bound on the number of lattice points

Theorem (Dadush 2012)
For any full rank lattice L C R™ and convex body K C R™ we have
vol(K)

KNLI<N:=2" JK), 1} - .
KN L max{p(£, K) }det(m

Moreover, we can enumerate the points in same time.

Proof of moreover part:
» Bound holds for any translate of K
> Any M-ellipsoid € also has |€ N £] < 20N

» Hence can enumerate all points in K in time 2°(™"N.
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Daniel’s algorithm (analysis)

Analysis:
» Can find W in time 2°(™) [Dadush "12]
» Recursion for runtime (d := dimW):

d

T(n) < 20M +Tl Tm=d) = T(n) <OoMm™



Daniel’s algorithm (analysis)

Analysis:
» Can find (logn)-approximate W in time 2°(™) [Dadush 12, 19]
» Recursion for runtime (d := dimW):

Tm) <2°™ + (logn)* T —d) = [T(n) < O(logn)™
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Thanks for your attention!



